[集合]初中數學知識點總結
總結是對某一特定時間段內的學習和工作生活等表現情況加以回顧和分析的一種書面材料,它是增長才干的一種好辦法,讓我們好好寫一份總結吧。總結怎么寫才不會千篇一律呢?下面是小編收集整理的初中數學知識點總結,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數學知識點總結1
平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系:
在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。
初中數學知識點:因式分解的一般步驟
關于數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解定義:
把一個多項式化成幾個整式的積的'形式的變形叫把這個多項式因式分解。
因式分解要素:
①結果必須是整式
②結果必須是積的形式
③結果是等式
④因式分解與整式乘法的關系:m(a+b+c)
公因式:
一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
①系數是整數時取各項最大公約數。
②相同字母取最低次冪
③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。
②確定商式
③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括號化成單括號
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
初中數學知識點總結2
在初中數學課堂教學中,小結一般作為總結本課,開啟下一課的鑰匙。但是在具體執行過程中,受到時間、學生心態、教師課堂設計水平等因素的限制,初中數學課堂小結在運用的過程中呈現出多種問題。究其原因是多方面的,而其最主要的原因則來源于教師對學生心理的把握力度不夠。心理學專家在當代少年兒童的大腦結構分析基礎上所做出的研究表明,在初中階段的學生對課程的關注度主要集中在前15分鐘,個別注意力比較好的學生能堅持到15~25分鐘,隨著時間的推移,從25分鐘到45分鐘之間學生的記憶力和注意力則出現了逐漸下滑的趨勢。由此可見,教師在做初中數學課程設計時,僅僅按照傳統習慣將課堂小結作為課末總結的方式并不科學,對學生的課堂學習和課下探索延伸起不到推動作用。
由此,在新的知識環節講解和學習的過程中,對課堂小結的設計,教師應該通過巧妙的規劃,實現溫故知新,而這又是對本堂課程的總結和反思的過程,具有極強的邏輯性和漸進性,環環相扣,同時要為學生的思考和課下探索的延伸留出獨立的空間。因此,按照具體的操作,本文以浙教版初中數學“探索多邊形的內角和”的課堂學習為例,對課堂小結的運用從以下兩個方面進行闡述。
一、撥迷梳“理”,溫故知新
七年級“探索多邊形的內角和”一課的教學重點是讓學生了解什么是多邊形、什么是內角、如何求內角和、如何在現實生活中利用此種計算方法。新課標要求,學生作為教學主體,對課程重點內容的了解和領悟主要是以他們自身的動手操作為主,這也是教師在教案設計時的主要切入點之一。在明確本堂課的教學重點之后,教師需要對以往學習過的知識點進行梳理,并找出與本堂課有關聯性的知識點,在課程初始時作為引導,通過對以往知識點的回顧,如三角形、相交線等已學知識點引出本堂課的重點。而后面即將學習的`課程,如“多姿多彩幾何圖形”等的相應測試,也可以作為學生課堂及課后的延伸知識點,在教師的課程講解過程中予以貫穿。當然,在課程設計初期,教師要尤為注意的是,應根據本堂課知識點的重點排序,由主到輔、由簡入深地安排好具有節奏感的講解內容及小結,而作為延伸思考的知識點在每個小結部分可以按照其相關性和重要性進行穿插安排。
二、動手操作,注重反思
“探索多邊形的內角和”中,多邊形的概念是本課各個難點展開的基礎,按照多邊形的概念,教師可以讓學生用線、卡紙、鐵絲等工具自行制作凹多邊形或凸多變形,以體驗多邊形的曲線美。引導學生嘗試以拉伸和縮小的方式構架出凹多邊形和凸多變形后,教師可以讓學生按照體驗來描述二者的區別和相同點,并以此作為小結。當學生做完歸納后,根據本課“多邊形的內角和主要以凸多邊形為主”的教學目標要求,教師可提問:“同學們目前已經了解了二者的區別,本堂課要講解的‘多邊形內角和’主要以凸多邊形為基礎,但是為什么我們不以凹多邊形為基礎呢?請同學們仔細想想原因。”教師的這種講解模式既可以為下面對“內角和”的重點講解作鋪墊,又可以讓學生深入思考之前對凹凸多邊形的描述是否恰當,是否符合多邊形的數學性規律。
在此種引導方法下,學生會按照下一個知識點的內容來反思之前的小結是否具有全面性。在反復的思考和對比過程中,學生的邏輯思維可以得到充分的訓練。這對培養學生的數學思維,以及對知識點的重復性推敲和反思能力的提升具有促進作用。一旦學生在思考和探討的過程中,摸索到數學本身的規律,并從復雜多樣的數學知識點中找到其原本的架構,自然會在頭腦中建立起一個符合自身記憶和領悟需要的數學知識體系。
三、大道從簡,循環漸進
大道從簡,按照初中數學的知識點架構來看,每堂課的每個知識點都可以在被重點提煉之后作為節點來布置課堂小結。以數學的邏輯思維傳承性為基礎,課堂上的下一個知識點就可以作為反思和推敲上一個小結的試金石,如此循環往復后,課末的最終知識點總結則對本課所有知識點小結進行有效的補充和完善,進而延伸出下堂課以及與本堂課重點內容相關的其他數學知識點的探索和思考。
當然,這種教學方法也同樣可以運用到其他學科的教學中。借助教師的漸進式誘導,學生會自主加入到課堂探索中,通過由簡到難、由淺入深的逐層遞進式反思和討論提升在課堂中的興趣度和專注度。
初中數學知識點總結3
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等——補角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理:經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理
xxx兩邊的和大于第三邊
16、推論
xxx兩邊的差小于第三邊
17、xxx內角和定理:
xxx三個內角的和等于180°
18、推論1
直角xxx的兩個銳角互余
19、推論2
xxx的一個外角等于和它不相鄰的兩個內角的和
20、推論3
xxx的一個外角大于任何一個和它不相鄰的內角
21、全等xxx的對應邊、對應角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個xxx全等
23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的
兩個xxx全等
24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個xxx全等
25、邊邊邊公理(SSS):有三邊對應相等的兩個xxx全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角xxx全等
27、定理1
在角的平分線上的點到這個角的兩邊的距離相等
28、定理2
到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、推論1
等腰xxx頂角的平分線平分底邊并且垂直于底邊
31、推論2
等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3
等邊xxx的各角都相等,并且每一個角都等于60°
33、等腰xxx的判定定理
如果一個xxx有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
34、等腰xxx的性質定理
等腰xxx的兩個底角相等
(即等邊對等角)
35、推論1
三個角都相等的xxx是等邊xxx
36、推論
有一個角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線等于斜邊上的一半
39、定理
線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理
和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1
關于某條直線對稱的兩個圖形是全等形
43、定理
如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3
兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理
如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理
直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果xxx的三邊長a、b、c有關系a2+b2=c2,那么這個xxx是直角xxx
48、定理
四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理
n邊形的內角的和等于(n-2)×180°
51、推論
任意多邊的外角和等于360°
52、平行四邊形性質定理1
平行四邊形的對角相等
53、平行四邊形性質定理2
平行四邊形的對邊相等
54、推論
夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3
平行四邊形的對角線互相平分
56、平行四邊形判定定理1
兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1
矩形的四個角都是直角
61、矩形性質定理2
矩形的對角線相等
62、矩形判定定理1
有三個角是直角的四邊形是矩形
63、矩形判定定理2
對角線相等的平行四邊形是矩形
64、菱形性質定理1
菱形的四條邊都相等
65、菱形性質定理2
菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1
正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2
正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1
關于中心對稱的兩個圖形是全等的
72、定理2
關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73、逆定理
如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74、等腰梯形性質定理
等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理
在同一底上的兩個角相等的梯
形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理
如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1
經過梯形一腰的中點與底平行的`直線,必平分另一腰
80、推論2
經過xxx一邊的中點與另一邊平行的直線,必平分第三邊
81、xxx中位線定理
xxx的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理
三條平行線截兩條直線,所得的對應線段成比例
87、推論
平行于xxx一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理
如果一條直線截xxx的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于xxx的第三邊
89、平行于xxx的一邊,并且和其他兩邊相交的直線,所截得的xxx的三邊與原xxx三邊對應成比例
90、定理
平行于xxx一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的xxx與原xxx相似
91、相似xxx判定定理1
兩角對應相等,兩xxx相似(ASA)
92、直角xxx被斜邊上的高分成的兩個直角xxx和原xxx相似
93、判定定理2
兩邊對應成比例且夾角相等,兩xxx相似(SAS)
94、判定定理3
三邊對應成比例,兩xxx相似(SSS)
95、定理
如果一個直角xxx的斜邊和一條直角邊與另一個直角xxx的斜邊和一條直角邊對應成比例,那么這兩個直角xxx相似(HL)
96、性質定理1
相似xxx對應高的比,對應中線的比與對應角平分線的比都等于相似比
97、性質定理2
相似xxx周長的比等于相似比
98、性質定理3
相似xxx面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點的距離等于定長的點的集合
102、圓的內部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理
不在同一直線上的三點確定一個圓。
110、垂徑定理
垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧(直徑)
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理
一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果xxx一邊上的中線等于這邊的一半,那么這個xxx是直角xxx
120、定理
圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
121、①直線L和⊙O相交
0
②直線L和⊙O相切
d=r
③直線L和⊙O相離
d>r
122、切線的判定定理
經過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質定理
圓的切線垂直于經過切點的半徑
124、推論1
經過圓心且垂直于切線的直線必經過切點
125、推論2
經過切點且垂直于切線的直線必經過圓心
126、切線長定理
從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對的圓周角?
129、推論
如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理
圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線段的比例中項
132、切割線定理
從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?
133、推論
從圓外一點引圓的兩條割線,這一點到每條
割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離
d>R+r
②兩圓外切
d=R+r
③兩圓相交
R-r<d<R+r(R>r)
④兩圓內切
d=R-r(R>r)
⑤兩圓內含
d<R-r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理
任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等于(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角xxx
141、正n邊形的面積Sn=pn*rn/2
p表示正n邊形的周長
142、正xxx面積√3a^2/4
a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長=d-(R-r)
外公切線長=d-(R+r)
初中數學知識點總結4
第一章有理數
一、正數和負數
⒈正數和負數的概念
負數:比0小的數正數:比0大的數0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)
②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。
2、具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數:比原先多了的數,增加增長了的數一般記為正數;相反,比原先少了的數,減少降低了的數一般記為負數。 3.0表示的意義
⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
⑵0是正數和負數的分界線,0既不是正數,也不是負數。
二、有理數
1、有理數的概念
⑴正整數、0、負整數統稱為整數(0和正整數統稱為自然數)
⑵正分數和負分數統稱為分數
⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。
注意:引入負數以后,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8?也是偶數,—1,—3,—5?也是奇數。
2、(1)凡能寫成q(p,q為整數且p?0)形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負p
分數統稱分數;整數和分數統稱有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;?不是有理數;
學霸分享的數學復習技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。
所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。
2、研究每題都考什么
數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰術,而是要通過一題聯想到很多題。
3、錯一次反思一次
每次業及考試或多或少會發生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現。因此平時注意把錯題記下來。
學生若能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。
4、分析試卷總結經驗
每次考試結束試卷發下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。
數學解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。
2、因式分解法
因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。
3、換元法
替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。
4、判別式法與韋達定理
一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。
韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。
5、待定系數法
在解決數學問題時,如果我們首先判斷我們所尋找的'結果具有一定的形式,其中包含某些未決的系數,然后根據問題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。
數學經常遇到的問題解答
1、要提高數學成績首先要做什么?
這一點,是很多學生所關注的,要提高數學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現,因此要提高數學成績先要把基礎夯實。
2、基礎不好怎么學好數學?
對于基礎差的同學來說,課本是就是學好數學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。
3、是否要采用題海戰術?
方法君曾不止一次提到了“題海戰術”,題海戰術究竟可不可取呢?“題海戰術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。
4、做題總是粗心怎么辦?
很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數學沒有“粗心”只有“不用心”。
為什么要學習數學
作為一門普及度極廣的學科,數學在人類文明的發展史上一直占據著重要的地位。雖然很多人可能會對數學產生排斥,認為它枯燥無味,但事實上,數學是所有學科的基石之一,對我們日常生活以及未來的職業發展有著重大影響。下面我將詳細闡述學習數學的重要性。
首先,數學可以幫助我們提高邏輯思維能力。數學的學科性質使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。
其次,數學在現代科技中起著至關重要的作用。在計算機科學、物理學、經濟學、工程學等領域,數學可以幫助我們建立模型、分析數據、預測趨勢,并且可以在實際應用中優化和改進。例如,在人工智能領域,深度學習技術所涉及的數學概念包括線性代數、微積分和概率論等,如果沒有深厚的數學基礎,很難理解和應用這些技術。同時,在工程學領域,許多機械、電子、化工等產品的設計和制造過程,也需要運用到數學知識,因此學習數學可以使我們更好地參與到現代科技的發展中。
除此之外,數學也是一種普遍使用的語言,許多學科和領域都使用數學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數學語言來描述自然世界的規律和現象。在社會科學和商科領域,經濟學和金融學運用的數學概念,如微積分、線性代數和統計學等,使得我們能夠更好地理解經濟和財務數據,并進行決策。因此,學習數學可以讓我們更好地理解、溝通和交流各個領域的知識。
最后,學習數學也可以為我們的職業發展帶來廣泛的機遇和發展空間。在許多領域,數學專業的畢業生都有很廣泛的就業機會,如金融界、數據科學、研究機構、教育等。數學專業的人才,不只會提供理論支持,同時也能夠解決現實中具體的問題,使其在各自領域脫穎而出。
初中數學知識點總結5
一、特殊的平行四邊形:
1.矩形:
(1)定義:有一個角是直角的平行四邊形。
(2)性質:矩形的四個角都是直角;矩形的對角線平分且相等。
(3)判定定理:
①有一個角是直角的平行四邊形叫做矩形。
②對角線相等的平行四邊形是矩形。
③有三個角是直角的四邊形是矩形。
直角三角形的性質:直角三角形中所對的直角邊等于斜邊的一半。
2.菱形:
(1)定義:鄰邊相等的'平行四邊形。
(2)性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
(3)判定定理:
①一組鄰邊相等的平行四邊形是菱形。
②對角線互相垂直的平行四邊形是菱形。
③四條邊相等的四邊形是菱形。
(4)面積:
3.正方形:
(1)定義:一個角是直角的菱形或鄰邊相等的矩形。
(2)性質:四條邊都相等,四個角都是直角,對角線互相垂直平分。正方形既是矩形,又是菱形。
(3)正方形判定定理:
①對角線互相垂直平分且相等的四邊形是正方形;
②一組鄰邊相等,一個角為直角的平行四邊形是正方形;
③對角線互相垂直的矩形是正方形;
④鄰邊相等的矩形是正方形
⑤有一個角是直角的菱形是正方形;
⑥對角線相等的菱形是正方形。
二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯系:
1.矩形、菱形和正方形都是特殊的平行四邊形,其性質都是在平行四邊形的基礎上擴充來的。矩形是由平行四邊形增加“一個角為90°”的條件得到的,它在角和對角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個角為90°”兩個條件得到的,它在邊、角和對角線方面都具有比平行四邊形更多的特性。
2.矩形、菱形的判定可以根據出發點不同而分成兩類:一類是以四邊形為出發點進行判定,另一類是以平行四邊形為出發點進行判定。而正方形除了上述兩個出發點外,還可以從矩形和菱形出發進行判定。
三、判定一個四邊形是特殊四邊形的步驟:
常見考法
(1)利用菱形、矩形、正方形的性質進行邊、角以及面積等計算;
(2)靈活運用判定定理證明一個四邊形(或平行四邊形)是菱形、矩形、正方形;
(3)一些折疊問題;
(4)矩形與直角三角形和等腰三角形有著密切聯系、正方形與等腰直角三角形也有著密切聯系。所以,以此為背景可以設置許多考題。
誤區提醒
(1)平行四邊形的所有性質矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質平行四邊形不一定具有,這點易出現混淆;
(2)矩形、菱形具有的性質正方形都具有,而正方形具有的性質,矩形不一定具有,菱形也不一定具有,這點也易出現混淆;
(3)不能正確的理解和運用判定定理進行證明,(如在證明菱形時,把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);
(4)再利用對角線長度求菱形的面積時,忘記乘;
(5)判定一個四邊形是特殊的平行四邊形的條件不充分。
初中數學知識點總結6
一、初中數學基本概念
1.方程:含有未知數的等式叫做方程。
2.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
3.方程的解:使方程左右兩邊相等的未知數的值叫做方程的解。
4.解方程:求方程的解的過程叫做解方程。
5.恒等式:兩個含有相同的未知數,并且含未知數項的系數都是零的整式方程是一元一次方程。
二、初中數學基本公式
1.三角形面積的公式:三角形面積=底×高÷2,用字母表示為“S=ah÷2”。
2.平行四邊形面積的公式:平行四邊形面積=底×高,用字母表示為“S=ah”。
3.梯形面積的公式:梯形面積=(上底+下底)×高÷2,用字母表示為“S=(a+b)h÷2”。
4.圓的面積公式:圓面積=半徑×半徑×π,用字母表示為“S=πr2”。
5.菱形的面積公式:菱形面積=底×高,用字母表示為“S=ab”。
6.正方形面積公式:正方形面積=邊長×邊長,用字母表示為“S=a2”。
7.一元一次方程求解公式:ax=b,其中a和b為方程的系數,x為未知數。當a≠0時,有唯一解;當a=0且b≠0時,無解;當a=0且b=0時,有無數解。
三、初中數學基本定理
1.等式的性質:等式兩邊同時加上(或減去)同一個代數式,所得結果仍是等式;等式兩邊同時乘以(或除以)同一個不為0的數或代數式,所得結果仍是等式。
2.方程的解法:通過移項、合并同類項、去括號、去分母等方式,將一元一次方程轉化為ax=b的形式,求解得到方程的解。
3.一元一次不等式的解法:將一元一次不等式轉化為ax>b或ax
4.二元一次方程組的解法:通過代入消元法或加減消元法,將二元一次方程組轉化為一個一元一次方程,然后求解得到方程組的解。
5.菱形的性質:菱形的四條邊相等,對角線互相垂直平分,并且每一組對角線平分一組對角。
6.正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質,并且四條邊相等,四個角都是直角。
7.相似三角形的判定定理:兩個三角形對應邊成比例且對應角相等,則這兩個三角形相似。
8.全等三角形的判定定理:兩個三角形三邊相等、兩邊夾角相等、兩角夾邊相等、兩角和一邊相等,則這兩個三角形全等。
9.垂徑定理:在圓中,直徑平分弦(不是直徑的弦)所對的兩條弧,平分弦所對的圓周弧的弦垂直平分弦。
10.圓的切線的判定定理:經過半徑的外端且垂直于這條半徑的直線是圓的切線;經過圓的半徑外端且垂直于切線的直線是圓的切線;圓的割線定理:一條直線與一個圓有兩個不同的交點,則這條直線被圓截得的線段長的平方等于這個圓上兩點所對應的弦長的平方差。
11.相交弦定理:圓內的`兩條相交弦被交點分成的兩條線段長的積相等。
12.切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的積相等。
13.圓心角、弧、弦的關系定理:在同圓或等圓中,相等的圓心角所對的弧相等;相等的弧所對的弦也相等;相等的弦所對的弧也相等;在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等;弧的度數等于它所對的圓心角度數;一個圓心角等于它所對的弧的度數;半圓(或直徑)所對的圓周角是直角;90°的圓周
初中數學知識點總結7
二元一次方程(組)
1、二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。
2、二元一次方程組:含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。
3、二元一次方程組的解:二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
4、二元一次方程組的解法。
(1)代人消元法:解方程組的基本思路是“消元”一把“二元”變為“一元”,主要步驟是,將其中一個方程中的某個未知數用含有另一個未知數的代數式表示出來,并代人另一個方程中,從而消去一個未知數,化二元一次方程組為一元一次方程,這種解方程組的方法稱為代人消元法,簡稱代人法。
(2)加減消元法:通過方程兩邊分別相加(減)消去其中一個未知數,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法。
提醒大家:二元一次方程組的解法包括代人消元法和加減消元法。
平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:
①在同一平面
②兩條數軸
③互相垂直
④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的.橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
①結果必須是整式
②結果必須是積的形式
③結果是等式
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
①系數是整數時取各項最大公約數。
②相同字母取最低次冪
③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。
②確定商式
③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括號化成單括號
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
初中數學知識點總結8
k0時,y隨x的增大而減小,直線一定過二、四象限(3)若直線l1:yk1xb1l2:yk2xb2
當k1k2時,l1//l2;當b1b2b時,l1與l2交于(0,b)點。
(4)當b>0時直線與y軸交于原點上方;當b學大教育
(1)是中心對稱圖形,對中稱心是原點(2)對稱性:是軸直線yx和yx(2)是軸對稱圖形,對稱k0時兩支曲線分別位于一、三象限且每一象限內y隨x的增大而減小(3)
k0時兩支曲線分別位于二、四象限且每一象限內y隨x的增大而增大(4)過圖象上任一點作x軸與y軸的垂線與坐標軸構成的矩形面積為|k|。
P(1)應用在u3.應用(2)應用在(3)其它F上SS上t其要點是會進行“數結形合”來解決問題二、二次函數
1.定義:應注意的問題
(1)在表達式y=ax2+bx+c中(a、b、c為常數且a≠0)(2)二次項指數一定為22.圖象:拋物線
3.圖象的性質:分五種情況可用表格來說明表達式(1)y=ax2頂點坐標對稱軸(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直線x=hy最小=0y最大=0y隨x的變化情況隨x增大而增大隨x增大而減小隨x的增大而增大隨x的增大而減小隨x的增大而增大隨x的增大而減小直線x=0(y軸)①若a>0,則x=0時,若a>0,則x>0時,y②若a0,則x=0時,①若a>0,則x>0時,y②若a0,則x=h時,①若a>0,則x>h時,y②若a學大教育
表達式h)2+k頂點坐標對稱軸直線x=h最大(小)值y最小=ky最大=k(5)y=ax2+b(x+cb2ay隨x的變化情況隨x的增大而增大隨x的增大而減小b2a時,①若a>0,則x>b2a(4)y=a(x-(h,k)①若a>0,則x=h時,①若a>0,則x>h時,y②若a0,則x=4acb24ay最小=4acb24ab時,y隨x的增大而增大時,②若a2a2a時,y隨x的增大而減小b②若a學大教育
一次函數圖象和性質
【知識梳理】
1.正比例函數的'一般形式是y=kx(k≠0),一次函數的一般形式是y=kx+b(k≠0).2.一次函數ykxb的圖象是經過(3.一次函數ykxb的圖象與性質
圖像的大致位置經過象限第象限第象限第象限第象限y隨x的增大y隨x的增大而y隨x的增大y隨x的增大性質而而而而
【思想方法】數形結合
k、b的符號k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)兩點的一條直線.k反比例函數圖象和性質
【知識梳理】
1.反比例函數:一般地,如果兩個變量x、y之間的關系可以表示成y=或(k為常數,k≠0)的形式,那么稱y是x的反比例函數.2.反比例函數的圖象和性質
k的符號k>0yoxk<0yox
圖像的大致位置經過象限性質
第象限在每一象限內,y隨x的增大而第象限在每一象限內,y隨x的增大而3.k的幾何含義:反比例函數y=的幾何意義,即過雙曲線y=
k(k≠0)中比例系數kxk(k≠0)上任意一點P作x4
x軸、y軸垂線,設垂足分別為A、B,則所得矩形OAPB
函數學習方法學大教育
的面積為.
【思想方法】數形結合
二次函數圖象和性質
【知識梳理】
1.二次函數ya(xh)2k的圖像和性質
圖象開口對稱軸頂點坐標最值增減性
在對稱軸左側在對稱軸右側當x=時,y有最值y隨x的增大而y隨x的增大而a>0yOa<0x當x=時,y有最值y隨x的增大而y隨x的增大而銳角三角函數
【思想方法】
1.常用解題方法設k法2.常用基本圖形雙直角
【例題精講】例題1.在△ABC中,∠C=90°.(1)若cosA=
14,則tanB=______;(2)若cosA=,則tanB=______.255
函數學習方法學大教育
例題2.(1)已知:cosα=
23,則銳角α的取值范圍是()A.0°
初中數學知識點總結9
知識點總結
1.定義:兩組對邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質
(1)平行四邊形的對邊平行且相等;
(2)平行四邊形的鄰角互補,對角相等;
(3)平行四邊形的對角線互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個重要內容,如何根據平行四邊形的性質,判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的`五種判定方法,進行劃分:
第一類:與四邊形的對邊有關
(1)兩組對邊分別平行的四邊形是平行四邊形;
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
第二類:與四邊形的對角有關
(4)兩組對角分別相等的四邊形是平行四邊形;
第三類:與四邊形的對角線有關
(5)對角線互相平分的四邊形是平行四邊形
常見考法
(1)利用平行四邊形的性質,求角度、線段長、周長;
(2)求平行四邊形某邊的取值范圍;
(3)考查一些綜合計算問題;
(4)利用平行四邊形性質證明角相等、線段相等和直線平行;
(5)利用判定定理證明四邊形是平行四邊形。
誤區提醒
(1)平行四邊形的性質較多,易把對角線互相平分,錯記成對角線相等;
(2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個等腰梯形。
初中數學知識點總結10
定義
對應角相等,對應邊成比例的兩個三角形叫做相似三角形
比值與比的概念
比值是一個具體的數字如:AB/EF=2
而比不是一個具體的數字如:AB/EF=2:1判定方法
證兩個相似三角形應該把表示對應頂點的字母寫在對應的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個三角形的對應頂點可能沒有寫在對應的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個三角形的對應頂點寫在了對應的位置上。
方法一(預備定理)
平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎。這個引理的證明方法需要平行線與線段成比例的證明)
方法二
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似。
方法三
如果兩個三角形的'兩組對應邊成比例,并且相應的夾角相等,
那么這兩個三角形相似
方法四
如果兩個三角形的三組對應邊成比例,那么這兩個三角形相似
方法五(定義)
對應角相等,對應邊成比例的兩個三角形叫做相似三角形
三個基本型
Z型A型反A型
方法六
兩個直角三角形中,斜邊與直角邊對應成比例,那么兩三角形相似。一定相似的三角形
1、兩個全等的三角形
(全等三角形是特殊的相似三角形,相似比為1:1)
2、兩個等腰三角形
(兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)
3、兩個等邊三角形
(兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)
4、直角三角形中由斜邊的高形成的三個三角形(母子三角形)
圖形的學習需要大家對于知識的詳細了解和滲透,而不是一帶而過。
初中數學知識點總結11
一、角的定義
“靜態”概念:有公共端點的兩條射線組成的圖形叫做角。
“動態”概念:角可以看作是一條射線繞其端點從一個位置旋轉到另一個位置所形成的圖形。
如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補角的概念和性質:
概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。
如果兩個角的和是一個直角,那么這兩個角叫做互為余角。
說明:互補、互余是指兩個角的數量關系,沒有位置關系。
性質:同角(或等角)的余角相等;
同角(或等角)的補角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規和直尺)。
五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。
常見考法
(1)考查與時鐘有關的'問題;(2)角的計算與度量。
誤區提醒
角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。
初中數學知識點梳理
1.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1 ……(檢驗方程的解)。
4.列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程。
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
11.列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間;
(2)工程問題:工作量=工效·工時;
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
(5)商品價格問題:售價=定價·折·,利潤=售價—成本,;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。
本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。
初中數學知識點總結12
整式的加減
2、1整式
1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數、單項式指的是數或字母的積的代數式、單獨一個數或一個字母也是單項式、因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式、
2、單項式的系數:是指單項式中的數字因數;
3、單項數的次數:是指單項式中所有字母的指數的和、
4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式、每個單項式稱項,常數項,多項式的次數就是多項式中次數的次數。多項式的次數是指多項式里次數項的次數,這里是次數項,其次數是6;多項式的項是指在多項式中,每一個單項式、特別注意多項式的項包括它前面的性質符號、
5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。
6、單項式和多項式統稱為整式。
2、2整式的加減
1、同類項:所含字母相同,并且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。
2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數相同,二者缺一不可、同類項與系數大小、字母的排列順序無關
3、合并同類項:把多項式中的同類項合并成一項。可以運用交換律,結合律和分配律。
4、合并同類項法則:合并同類項后,所得項的系數是合并前各同類項的系數的.和,且字母部分不變;
5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。
6、整式加減的一般步驟:
一去、二找、三合
(1)如果遇到括號按去括號法則先去括號、(2)結合同類項、(3)合并同類項葫蘆島
初中數學知識點歸納
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
三角函數特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
三角函數記憶順口溜
1三角函數記憶口訣
“奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函數的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。
2符號判斷口訣
全,S,T,C,正。這五個字口訣的意思就是說:第一象限內任何一個角的四種三角函數值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。
也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數為正值的名稱。口訣中未提及的都是負值。
“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函數為正值。
3三角函數順口溜
三角函數是函數,象限符號坐標注。函數圖像單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字一,連結頂點三角形。向下三角平方和,倒數關系是對角,頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
初中數學知識點大全
誘導公式的本質
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的關系:
sin( )=-sin
cos( )=-cos
tan( )=tan
cot( )=cot
公式三: 任意角與 -的三角函數值之間的關系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關系:
sin( )=sin
cos( )=-cos
tan( )=-tan
cot( )=-cot
初中數學知識點總結13
誘導公式的本質
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的.誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的關系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數值之間的關系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初中數學知識點總結14
一、基本知識
一、數與代數
A、數與式:
1、有理數:
①整數→正整數,0,負整數;
②分數→正分數,負分數
數軸:
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。
②任何一個有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。
④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。
②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0、兩個負數比較大小,絕對值大的反而小。
有理數的運算:帶上符號進行正常運算。
加法:
①同號相加,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
③一個數與0相加不變。
減法:減去一個數,等于加上這個數的相反數。
乘法:
①兩數相乘,同號得正,異號得負,絕對值相乘。
②任何數與0相乘得0、
③乘積為1的兩個有理數互為倒數。
除法:
①除以一個數等于乘以一個數的倒數。
②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數
無理數
無理數:無限不循環小數叫無理數,例如:π=…
平方根:
①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。
②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。
③一個正數有2個平方根;0的平方根為0;負數沒有平方根。
④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:
①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。
②正數的立方根是正數、0的立方根是0、負數的立方根是負數。
③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:
①實數分有理數和無理數。
②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣;
③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合并同類項:
①所含字母相同,并且相同字母的指數也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:
①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。
②一個單項式中,所有字母的指數和叫做這個單項式的次數。
③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:
A^M+A^N=A^(M+N)
(A^M)^N=A^(MN
(A/B)^N=A^N/B^N
除法一樣。
整式的乘法:
①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、
整式的除法:
①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0、
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數。
加減法:
①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:
①分母中含有未知數的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:
①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1、
二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的'方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
解二元一次方程組的方法:代入消元法;加減消元法。
一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y=0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖像與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a
也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元二次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△B,則A+C>B+C;
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;
例如:如果A>B,則A—C>B—C;
在不等式中,如果乘以同一個正數,不等式符號不改向;
例如:如果A>B,則A*C>B*C(C>0);
在不等式中,如果乘以同一個負數,不等號改向;
例如:如果A>B,則A*C
如果不等式乘以0,那么不等號改為等號;
所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等于0,否則不等式不成立;
3、函數
變量:因變量Y,自變量X。
在用圖像表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。
一次函數:
①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱Y是X的一次函數。
②當B=0時,稱Y是X的正比例函數。
一次函數的圖像:
①把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖像。
②正比例函數Y=KX的圖像是經過原點的一條直線。
③在一次函數中,當K〈0,B〈O時,則經234象限;
當K〈0,B〉0時,則經124象限;
當K〉0,B〈0時,則經134象限;
當K〉0,B〉0時,則經123象限。
④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:
①圖形是由點,線,面構成的。
②面與面相交得線,線與線相交得點。
③點動成線,線動成面,面動成體。
展開與折疊:
①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。
②N棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:
①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
2、角
線:
①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
③將線段的兩端無限延長就形成了直線。直線沒有端點。
④經過兩點有且只有一條直線。
比較長短:
①兩點之間的所有連線中,線段最短。兩點之間直線最短。
②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。
角的比較:
①角也可以看成是由一條射線繞著他的端點旋轉而成的。
②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角,180、始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角,360、
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:
①同一平面內,不相交的兩條直線叫做平行線。
②經過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點叫做垂足。
③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。
性質定理:角平分線上的點到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點在該角的角平分線上;
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:
1、對角線相等的菱形
2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等——補角=180—角度。
4、同角或等角的余角相等——余角=90—角度。
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理:經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理:三角形兩邊的和大于第三邊
16、推論:三角形兩邊的差小于第三邊
17、三角形內角和定理:三角形三個內角的和等于180°
18、推論1:直角三角形的兩個銳角互余
19、推論2:三角形的一個外角等于和它不相鄰的兩個內角的和
20、推論3:三角形的一個外角大于任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等
24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1:在角的平分線上的點到這個角的兩邊的距離相等
28、定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
31、推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3:等邊三角形的各角都相等,并且每一個角都等于60°
33、等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
34、等腰三角形的性質定理:等腰三角形的兩個底角相等(即等邊對等角)
35、推論1:三個角都相等的三角形是等邊三角形
36、推論:有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1:關于某條直線對稱的兩個圖形是全等形
43、定理:如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3:兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形
48、定理:四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理:n邊形的內角的和等于(n—2)×180°
51、推論:任意多邊的外角和等于360°
52、平行四邊形性質定理1:平行四邊形的對角相等
53、平行四邊形性質定理2:行四邊形的對邊相等
54、推論:夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3:平行四邊形的對角線互相平分
56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1:矩形的四個角都是直角
61、矩形性質定理2:矩形的對角線相等
62、矩形判定定理1:有三個角是直角的四邊形是矩形
63、矩形判定定理2:對角線相等的平行四邊形是矩形
64、菱形性質定理1:菱形的四條邊都相等
65、菱形性質定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1:四邊都相等的四邊形是菱形
68、菱形判定定理2:對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1:正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1:關于中心對稱的兩個圖形是全等的
72、定理2:關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73、逆定理:如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74、等腰梯形性質定理:等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d
84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例
87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3:三邊對應成比例,兩三角形相似(SSS)
95、定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(HL)
96、性質定理1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97、性質定理2:相似三角形周長的比等于相似比
98、性質定理3:相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)
101、圓是定點的距離等于定長的點的集合
102、圓的內部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理:不在同一直線上的三點確定一個圓。
110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧(直徑)
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理
一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120、定理
圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
121、①直線L和⊙O相交0<=d<r
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
122、切線的判定定理
經過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質定理
圓的切線垂直于經過切點的半徑
124、推論1
經過圓心且垂直于切線的直線必經過切點
125、推論2
經過切點且垂直于切線的直線必經過圓心
126、切線長定理
從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對的圓周角?
129、推論
如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理
圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理
從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?
133、推論
從圓外一點引圓的兩條割線,這一點到每條
割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R—r<d<R+r(R>r)
④兩圓內切d=R—r(R>r)
⑤兩圓內含d<R—r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理
任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等于(n—2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長
142、正三角形面積√3a^2/4,a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
144、弧長計算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長=d—(R—r),外公切線長=d—(R+r)
初中數學知識點總結15
一、基本知識
㈠、數與代數
A、數與式:
1、有理數
有理數:
①整數→正整數/0/負整數
②分數→正分數/負分數
數軸:
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。
②任何一個有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。
④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。
②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0、兩個負數比較大小,絕對值大的反而小。
有理數的運算:
加法:
①同號相加,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
③一個數與0相加不變。
減法:減去一個數,等于加上這個數的相反數。
乘法:
①兩數相乘,同號得正,異號得負,絕對值相乘。
②任何數與0相乘得0、
③乘積為1的兩個有理數互為倒數。
除法:
①除以一個數等于乘以一個數的倒數。
②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數
無理數:無限不循環小數叫無理數
平方根:
①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。
②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。
③一個正數有2個平方根/0的平方根為0/負數沒有平方根。
④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:
①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。
②正數的立方根是正數、0的立方根是0、負數的立方根是負數。
③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:
①實數分有理數和無理數。
②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合并同類項:
①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。
②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:
①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。
②一個單項式中,所有字母的指數和叫做這個單項式的次數。
③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN除法一樣。
整式的乘法:
①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0、
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數。
加減法:
①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:
①分母中含有未知數的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:
①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1、
二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的'方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(—b/2a,4ac—b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b2—4ac)]}/2a,X2={—b—√[b2—4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a,也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2—4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△B,A+C>B+C在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A—C>B—C在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。
②正比例函數Y=KX的圖象是經過原點的一條直線。
③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。
④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
㈡空間與圖形A、圖形的認識1、點,線,面
點,線,面:
①圖形是由點,線,面構成的。
②面與面相交得線,線與線相交得點。
③點動成線,線動成面,面動成體。
展開與折疊:
①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。
②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:
①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
2、角
線:
①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
③將線段的兩端無限延長就形成了直線。直線沒有端點。
④經過兩點有且只有一條直線。
比較長短:
①兩點之間的所有連線中,線段最短。
②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:
①角也可以看成是由一條射線繞著他的端點旋轉而成的。
②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:
①同一平面內,不相交的兩條直線叫做平行線。
②經過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點叫做垂足。
③平面內,過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出
現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內角和定理三角形三個內角的和等于180°
18、推論1直角三角形的兩個銳角互余
19、推論2三角形的一個外角等于和它不相鄰的兩個內角的和
20、推論3三角形的一個外角大于任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1在角的平分線上的點到這個角的兩邊的距離相等
28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3等邊三角形的各角都相等,并且每一個角都等于60°
34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35、推論1三個角都相等的三角形是等邊三角形
36、推論2有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1關于某條直線對稱的兩個圖形是全等形
43、定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形
48、定理四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理n邊形的內角的和等于(n—2)×180°
51、推論任意多邊的外角和等于360°
52、平行四邊形性質定理1平行四邊形的對角相等
53、平行四邊形性質定理2平行四邊形的對邊相等
54、推論夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3平行四邊形的對角線互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1矩形的四個角都是直角
61、矩形性質定理2矩形的對角線相等
62、矩形判定定理1有三個角是直角的四邊形是矩形
63、矩形判定定理2對角線相等的平行四邊形是矩形
64、菱形性質定理1菱形的四條邊都相等
65、菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1關于中心對稱的兩個圖形是全等的
72、定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73、逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74、等腰梯形性質定理等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d==m/n(b+d++n≠0),那么(a+c++m)/(b+d++n)=a/b
86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3三邊對應成比例,兩三角形相似(SSS)
95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97、性質定理2相似三角形周長的比等于相似比
98、性質定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點的距離等于定長的點的集合
102、圓的內部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理不在同一直線上的三點確定一個圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120、定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr
122、切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質定理圓的切線垂直于經過切點的半徑
124、推論1經過圓心且垂直于切線的直線必經過切點
125、推論2經過切點且垂直于切線的直線必經過圓心
126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理弦切角等于它所夾的弧對的圓周角
129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內切d=R—r(Rr)⑤兩圓內含dR—r(Rr)
136、定理相交兩圓的連心線垂直平分兩圓的公共弦
137、定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等于(n—2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
142、正三角形面積√3a/4a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內公切線長=d—(R—r)外公切線長=d—(R+r)
一、常用數學公式
公式分類公式表達式乘法與因式分解a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b|
|a|≤b—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|
一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a
根與系數的關系X1+X2=—b/aX1*X2=c/a注:韋達定理判別式
b2—4ac=0注:方程有兩個相等的實根b2—4ac>0注:方程有兩個不等的實根
b2—4ac歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,余下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。
【初中數學知識點總結】相關文章:
初中數學的知識點總結03-11
初中數學的知識點總結06-13
初中數學的知識點總結09-19
初中數學知識點的總結06-14
初中數學必考知識點總結02-22
初中數學知識點總結06-12
數學初中知識點總結03-27
初中數學代數知識點總結03-06
數學初中全部知識點總結03-06
初中數學幾何知識點總結03-16