高等傳熱學課件對流換熱

時間:2021-06-12 11:15:34 課件 我要投稿

高等傳熱學課件對流換熱

  一、概述

高等傳熱學課件對流換熱

  湍流模型是半經驗、半理論的研究方法,其目的是將湍流的脈動相關項與時均量聯系起來,使時均守恒方程封閉。

  自1925年Prandtl提出混合長度理論,各國學者對湍流模型進行了大量研究,提出了許多模型。W.C.Regnolds建議按模型中所包含的微分方程數目進行分類,成為目前適用的湍流模型分類方法。 一般將湍流模型分為:

  z 零方程模型(代數方程模型)

  z 一方程模型

  z 二方程模型

  z 多方程模型

  研究(Morkovin 莫爾科文)表明:當M<5時,流體的可壓縮性對湍流結構不起主導影響,因此我們僅參考不可壓縮情況。

  根據大量的實驗研究結果,湍流邊界層對流換熱的強弱主要取決在內層區:由相似原理分析得出,Prt近似是一個常數(Prt≈0.9)這樣,只要確定了νt,即可容易地得到αt,所以在介紹湍流模型時,只給出νt或t時均量的.關系式。

  二、零方程模型(代數方程模型) 零方程模型中不包含微分方程,而用代數關系式將νt與時均量關聯起來。Prandtl混合長度理論是最早的代數方程模型。它適用于:充分發展的湍流剪切流邊界層內層,y≤0.2δ。對外層區,一些學者研究后仍沿用Prandtl混合長度的模型關系式:但,L=λ δ (3.7.1) 實驗常數λ在0.08~0.09之間。

  Von Kármán、Deissler、Van Driest、Taylor等人先后提出了更完善的代數方程模型。

  (1) Von Kármán模型

  Von Kármán假設湍流內各點的脈動相似(局部相似),即各點之間只有長度尺度與空間尺度的差別。對平行流流場,若對某點(y0處)附近的時均速度進行Taylor展開:

 。╝)

  若流動相似,則必有尺度L與速度u0(u0=u(y0))使上式無量綱后成為通用分布。

  u(y0)y令 Y=; U(Y)= u0L

  則有無量綱形式:

 。╞) 若上式是相似的通用速度分布,則式中各系數之比應與位置無關,而是一個常數。則令:

  得出:

  其中:K

  (3.7.2) =0.4~0.41。

  (2) Deissler模型與Van Driest模型

  Deissler與Van Driest均認為,在靠近壁面的粘性底層,脈動并不為零,而是逐漸衰減,只在壁面上才嚴格為零。建議采用指數函數阻尼因子的形式。

  Deissler模型:式中,n=0.124.

 。3.7.4)

【高等傳熱學課件對流換熱】相關文章:

熱雷雨是對流雨嗎10-10

高等數學教學課件03-21

高等數學優秀課件03-25

高等數學學習課件03-26

關于高等數學課件03-31

大學高等數學課件03-01

高職高等數學課件03-31

空氣對流原理10-10

完整版的高等數學課件03-02

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
亚洲人成人一区在线观看 | 免费国产午夜精华视频 | 日韩专区国产99 | 伊人久久综合精品永久图片 | 一本久中文视频播放 | 欧美国产一级免费在线视频 |