初一數學知識點總結
總結就是把一個時段的學習、工作或其完成情況進行一次全面系統的總結,它可以有效鍛煉我們的語言組織能力,讓我們抽出時間寫寫總結吧。我們該怎么寫總結呢?下面是小編為大家整理的初一數學知識點總結,僅供參考,大家一起來看看吧。

初一數學知識點總結 1
1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。
兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大于10的數表示成a×10的'n次方的形式,用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。
初一數學知識點總結 2
平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的'任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
初一數學知識點總結 3
角的種類
角的種類:角的大小與邊的長短沒有關系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態定義中,取決于旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優角:大于180°小于360°叫優角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉而成的角叫做負角。
正角:逆時針旋轉的角為正角。
0角:等于零度的角。
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。
一元一次方程組的解法
一般步驟:
第一步:去分母,在方程兩邊同乘以所有分母的最小公倍數.注意:分子要加括號,不要漏乘不含有分母的項;
第二步:去括號,先去小括號,再去中括號,最后去大括號.注意:不要漏乘括號內各項,若括號前面是“ - ”,去括號后括號內各項都要變號;
第三步:移項,把含有未知數的項移到方程的一邊,其他項移到另一邊.注意:移項要變號,不移的項不變號,移項時不要漏項;
第四步:合并同類項,把方程化為 ax=b(a≠0)的形式.注意:系數相加,字母部分不變;
第五步:系數化為 1,把方程兩邊同除以未知數的系數 a,得到方程的解 x={frac{b}{a}}(a≠0).注意:不要把分子、分母位置顛倒.
整式的加減
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。
2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等于1.
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。
5.常數項:不含字母的項叫做常數項。
6.多項式的排列
(1)把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
(2)把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
7.多項式的排列時注意:
(1)由于單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。
(2)有兩個或兩個以上字母的多項式,排列時,要注意:
a.先確認按照哪個字母的指數來排列。
b.確定按這個字母向里排列,還是向外排列。
(3)整式:
單項式和多項式統稱為整式。
8. 多項式的加法:
多項式的加法,是指多項式的同類項的系數相加(即合并同類項)。
9.同類項:所含字母相同,并且相同字母的次數也分別相同的項叫做同類項。
10.合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數相加,所得的結果作為系數,字母與字母的指數不變。
第一章 有理數
1.1 正數與負數
在以前學過的0以外的數前面加上負號“—”的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上“+”)。
1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3 有理數的.加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等于加這個數的相反數。
1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。
兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大于10的數表示成a×10的n次方的形式,用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。
第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號后移到另一邊,叫做移項。
第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比較與運算
如果兩個角的和等于90度(直角),就說這兩個叫互為余角(compiementary angle),即其中每一個角是另一個角的余角。
如果兩個角的和等于180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的余角相等。
第四章 數據的收集與整理
收集、整理、描述和分析數據是數據處理的基本過程。
第五章 相交線與平行線
5.1 相交線
對頂角(vertical angles)相等。
過一點有且只有一條直線與已知直線垂直(perpendicular)。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。
5.2 平行線
經過直線外一點,有且只有一條直線與這條直線平行(parallel)。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內錯角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內角互補,那么兩直線平行。
5.3 平行線的性質
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內錯角相等。
兩條平行線被第三條直線所截,同旁內角互補。
判斷一件事情的語句,叫做命題(proposition)。
第六章 平面直角坐標系
6.1 平面直角坐標系
含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對(ordered pair)。
第七章 三角形
7.1 與三角形有關的線段
三角形(triangle)具有穩定性。
7.2 與三角形有關的角
三角形的內角和等于180度。
三角形的一個外角等于與它不相鄰的兩個內角的和。
三角形的一個外角大于與它不相鄰的任何一個內角
7.3 多邊形及其內角和
n邊形內角和等于:(n-2)?180度
多邊形(polygon)的外角和等于360度。
第八章 二元一次方程組
8.1 二元一次方程組
方程中含有兩個未知數(x和y),并且未知數的指數都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。
把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
8.2 消元
將未知數的個數由多化少、逐一解決的想法,叫做消元思想。
第九章 不等式與不等式組
9.1 不等式
用小于號或大于號表示大小關系的式子,叫做不等式(inequality)。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質:
不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
三角形中任意兩邊之差小于第三邊。
三角形中任意兩邊之和大于第三邊。
9.3 一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。
第十章 實數
10.1 平方根
如果一個正數x的平方等于a,那么這個正數x叫做a的算術平方根(arithmetic square root),2是根指數。
a的算術平方根讀作“根號a”,a叫做被開方數(radicand)。
0的算術平方根是0。
如果一個數的平方等于a,那么這個數叫做a的平方根或二次方根(square root) 。
求一個數a的平方根的運算,叫做開平方(extraction of square root)。
10.2 立方根
如果一個數的立方等于a,那么這個數叫做a的立方根或三次方根(cube root)。
求一個數的立方根的運算,叫做開立方(extraction of cube root)。
10.3 實數
無限不循環小數又叫做無理數(irrational number)。
有理數和無理數統稱實數(real number)。
初一數學知識點總結 4
概率
一、事件:
1、事件分為必然事件、不可能事件、不確定事件。
2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。
4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。
二、等可能性:是指幾種事件發生的可能性相等。
1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。
2、必然事件發生的概率為1,記作P(必然事件)=1;
3、不可能事件發生的概率為0,記作P(不可能事件)=0;
4、不確定事件發生的概率在0—1之間,記作0
三、幾何概率
1、事件A發生的概率等于此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。
2、求幾何概率:
(1)首先分析事件所占的面積與總面積的關系;
(2)然后計算出各部分的面積;
(3)最后代入公式求出幾何概率。
初一數學學習方法技巧
1、做好預習:
單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。
2、認真聽課:
聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善于聯想、類比和歸納,二是要敢于質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。
3、認真解題:
課堂練習是最及時最直接的反饋,一定不能錯過。不要急于完成作業,要先看看你的筆記本,回顧學習內容,加深理解,強化記憶。
4、及時糾錯:
課堂練習、作業、檢測,反饋后要及時查閱,分析錯題的原因,必要時強化相關計算的`訓練。不明白的問題要及時向同學和老師請教了,不能將問題處于懸而未解的狀態,養成今日事今日畢的好習慣。
5、學會總結:
馮老師說:“數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到了然于心,融會貫通。
6、學會管理:
管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷。馮老師稱,這可是大考復習時最有用的資料,千萬不可疏忽。
目前初中學生學習數學存在一個嚴重的問題就是不善于讀數學教材,他們往往是死記硬背。重視閱讀方法對提高初中學生的學習能力是至關重要的。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝干,然后一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然后細細地讀,即根據每章節后的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關系,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關系、編排意圖,并歸納要點,把書讀懂,并形成知識網絡,完善認識結構,當學生掌握了這三種讀法,形成習慣之后,就能從本質上改變其學習方式,提高學習效率了。
提高聽課質量要培養會聽課,聽懂課的習慣。注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最后的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉變為“會聽”。
有疑必問是提高學習效率的有效辦法學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂,沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學習效率。
初一數學知識點總結 5
一、方程的有關概念
1.方程:含有未知數的等式就叫做方程。
2.一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解。
注:⑴方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論。
二、等式的性質
(1)等式兩邊都加上(或減去)同個數(或式子),結果仍相等。用式子形式表示為:如果a=b,那么ac=bc
(2)等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc
三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項。
四、去括號法則
1.括號外的因數是正數,去括號后各項的符號與原括號內相應各項的符號相同.
2.括號外的因數是負數,去括號后各項的符號與原括號內相應各項的符號改變.
五、解方程的一般步驟
1.去分母(方程兩邊同乘各分母的最小公倍數)
2.去括號(按去括號法則和分配律)
3.移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4.合并(把方程化成ax=b(a0)形式)
5.系數化為1(在方程兩邊都除以未知數的系數a,得到方程的解x=ba)。
六、用方程思想解決實際問題的一般步驟
1.審:審題,分析題中已知什么,求什么,明確各數量之間的關系。
2.設:設未知數(可分直接設法,間接設法)。
3.列:根據題意列方程。
4.解:解出所列方程。
5.檢:檢驗所求的解是否符合題意。
6.答:寫出答案(有單位要注明答案)。
七、有關常用應用類型題及各量之間的關系
1、和、差、倍、分問題:
(1)倍數關系:通過關鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現。
(2)多少關系:通過關鍵詞語“多、少、和、差、不足、剩余……”來體現。
2、等積變形問題:
“等積變形”是以形狀改變而體積不變為前提。常用等量關系為:
①形狀面積變了,周長沒變;
②原料體積=成品體積。
3、勞力調配問題:
這類問題要搞清人數的`變化,常見題型有:
(1)既有調入又有調出。
(2)只有調入沒有調出,調入部分變化,其余不變。
(3)只有調出沒有調入,調出部分變化,其余不變。
4、數字問題
(1)要搞清楚數的表示方法:一個三位數的百位數字為a,十位數字是b,個位數字為c(其中a、b、c均為整數,且19,09,09)則這個三位數表示為:100a+10b+c
(2)數字問題中一些表示:兩個連續整數之間的關系,較大的比較小的大1;偶數用2n表示,連續的偶數用2n+2或2n2表示;奇數用2n+1或2n1表示。
5、工程問題:
工程問題中的三個量及其關系為:工作總量=工作效率工作時間
6、行程問題:
(1)行程問題中的三個基本量及其關系:路程=速度時間。
(2)基本類型有
①相遇問題;
②追及問題;常見的還有:相背而行;行船問題;環形跑道問題。
7、商品銷售問題
有關關系式:
商品利潤=商品售價商品進價=商品標價折扣率商品進價
商品利潤率=商品利潤/商品進價
商品售價=商品標價折扣率
8、儲蓄問題
(1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數,利息與本金的比叫做利率。利息的20%付利息稅
(2)利息=本金利率期數
本息和=本金+利息
利息稅=利息稅率(20%)
今天的內容就介紹這里了。
初一數學知識點總結 6
第一章有理數
1、大于0的數是正數。
2、有理數分類:正有理數、0、負有理數。
3、有理數分類:整數(正整數、0、負整數)、分數(正分數、負分數)
4、規定了原點,單位長度,正方向的直線稱為數軸。
5、數的大小比較:
①正數大于0,0大于負數,正數大于負數。
②兩個負數比較,絕對值大的反而小。
6、只有符號不同的兩個數稱互為相反數。
7、若a+b=0,則a,b互為相反數
8、表示數a的點到原點的距離稱為數a的絕對值
9、絕對值的三句:正數的絕對值是它本身,
負數的絕對值是它的相反數,
0的絕對值是0。
10、有理數的.計算:先算符號、再算數值。
11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)
12、乘除:同號得正,異號的負
13、乘方:表示n個相同因數的乘積。
14、負數的奇次冪是負數,負數的偶次冪是正數。
15、混合運算:先乘方,再乘除,后加減,同級運算從左到右,有括號的先算括號。
16、科學計數法:用ax10n 表示一個數。(其中a是整數數位只有一位的數)
17、左邊第一個非零的數字起,所有的數字都是有效數字。
【知識梳理】
1.數軸:數軸三要素:原點,正方向和單位長度;數軸上的點與實數是一一對應的。
2.相反數實數a的相反數是-a;若a與b互為相反數,則有a+b=0,反之亦然;幾何意義:在數軸上,表示相反數的兩個點位于原點的兩側,并且到原點的距離相等。
3.倒數:若兩個數的積等于1,則這兩個數互為倒數。
4.絕對值:代數意義:正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0;
幾何意義:一個數的絕對值,就是在數軸上表示這個數的點到原點的距離.
5.科學記數法:,其中。
6.實數大小的比較:利用法則比較大小;利用數軸比較大小。
7.在實數范圍內,加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數不能開偶次方。實數的運算基礎是有理數運算,有理數的一切運算性質和運算律都適用于實數運算。正確的確定運算結果的符號和靈活的使用運算律是掌握好實數運算的關鍵。
初一數學知識點總結 7
(一)正負數
1.正數:大于0的數。
2.負數:小于0的數。
3.0即不是正數也不是負數。
4.正數大于0,負數小于0,正數大于負數。
(二)有理數
1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點后的數字是無限不循環的。如:π)
2.整數:正整數、0、負整數,統稱整數。
3.分數:正分數、負分數。
(三)數軸
1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2.數軸的三要素:原點、正方向、單位長度。
3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
(四)有理數的加減法
1.先定符號,再算絕對值。
2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。
4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。5.a?b=a+(?b)減去一個數,等于加這個數的相反數。
(五)有理數乘法(先定積的`符號,再定積的大小)
1.同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。
2.乘積是1的兩個數互為倒數。
3.乘法交換律:ab=ba
4.乘法結合律:(ab)c=a(bc)
5.乘法分配律:a(b+c)=ab+ac
(六)有理數除法
1.先將除法化成乘法,然后定符號,最后求結果。
2.除以一個不等于0的數,等于乘這個數的倒數。
3.兩數相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數,都得0。(七)乘方1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0.3.同底數冪相乘,底不變,指數相加。
4.同底數冪相除,底不變,指數相減。
(八)有理數的加減乘除混合運算法則
1.先乘方,再乘除,最后加減。
2.同級運算,從左到右進行。
3.如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
(九)科學記數法、近似數、有效數字。
初一數學知識點總結 8
1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(注:單獨一個數字或字母也是代數式)
2、代數式的寫法:數學與字母相乘時,“×”號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,“×”號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。
3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要();如:電費、水費、出租車、商店優惠———————。
4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式。因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若①分母中不含有字母,②式子中含有加、減運算關系,也不是單項式。
單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)
單項數的次數:是指單項式中所有字母的指數的和。(注意指數1)
5、多項式:幾個單項式的`和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式。每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的次數(選代表);多項式的項是指在多項式中每一個單項式。特別注意多項式的項包括它前面的性質符號。它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。
6、代數式分為整式和分式(分母里含有字母);整式分為單項式和多項式。
初一數學知識點總結 9
基本平面圖形
1、直線的性質
(1)直線公理:經過兩個點有且只有一條直線。(兩點確定一條直線。)
(2)過一點的直線有無數條。
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。
2、線段的性質
(1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。
(3)線段的大小關系和它們的長度的大小關系是一致的。
3、線段的中點:點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM=BM=1/2AB(或AB=2AM=2BM)。
4、角:有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。
5、角的表示
角的表示方法有以下四種:
①用數字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。
④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。
6、角的度量
角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
7、角的平分線,從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
8、角的性質
(1)角的大小與邊的'長短無關,只與構成角的兩條射線的幅度大小有關。
(2)角的大小可以度量,可以比較,角可以參與運算。
9、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。
10、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。
從一個n邊形的同一個頂點出發,分別連接這個頂點與其余各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。
11、圓:平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。
圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
初一數學知識點總結 10
1、配方法;所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成—個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。
2、因式分解法,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,中學課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的常用手段。
3、換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、構造法;在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起—座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。
5、反證法是一種間接證法,它是先提出一個與命題的結論相反的.假設,然后,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為兩種:一種是相反的結論只有一種,另一種是相反的結論有無數種。前者需要把相反的結論推翻,后者只要舉出一個反例,就達到了證明的目的。
初一數學知識點總結 11
二元一次方程組
1、二元一次方程:含有兩個未知數,并且含未知數項的次數是1,這樣的方程是二元一次方程。注意:一般說二元一次方程有無數個解。
2、二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組。
3、二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解。注意:一般說二元一次方程組只有解(即公共解)。
4、二元一次方程組的解法:
(1)代入消元法;
(2)加減消元法;
(3)注意:判斷如何解簡單是關鍵。
※5、一次方程組的應用:
(1)對于一個應用題設出的`未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對于方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;
(3)對于方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系。
一元一次不等式(組)
1、不等式:用不等號,把兩個代數式連接起來的式子叫不等式。
2、不等式的基本性質:
不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;
不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;
不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變。
3、不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集。
4、一元一次不等式:只含有一個未知數,并且未知數的次數是1,系數不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b0或ax+b0,(a0)。
5、一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點。
初一數學知識點總結 12
正數和負數
⒈、正數和負數的概念
負數:比0小的數正數:比0大的數0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)
②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的.正數的符號是正號。
2、具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
(2)0是正數和負數的分界線,0既不是正數,也不是負數。如:
(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。
有理數
1、有理數的概念
(1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)
(2)正分數和負分數統稱為分數
(3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。③整數也能化成分數,也是有理數
注意:引入負數以后,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。
初一數學知識點總結 13
不等式
用小于號或大于號表示大小關系的式子,叫做不等式(inequality)。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個未知數,未知數的`次數是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質:
不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
三角形中任意兩邊之差小于第三邊。
三角形中任意兩邊之和大于第三邊。
一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。
初一數學知識點總結 14
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。
2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等于1.
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。
5.常數項:不含字母的項叫做常數項。
6.多項式的排列
(1)把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
(2)把一個多項式按某一個字母的指數從小到大的'順序排列起來,叫做把多項式按這個字母升冪排列。
7.多項式的排列時注意:
(1)由于單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。
(2)有兩個或兩個以上字母的多項式,排列時,要注意:
a.先確認按照哪個字母的指數來排列。
b.確定按這個字母向里排列,還是向外排列。
(3)整式:
單項式和多項式統稱為整式。
8.多項式的加法:
多項式的加法,是指多項式的同類項的系數相加(即合并同類項)。
9.同類項:所含字母相同,并且相同字母的次數也分別相同的項叫做同類項。
10.合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數相加,所得的結果作為系數,字母與字母的指數不變。
11.掌握同類項的概念時注意:
(1)判斷幾個單項式或項,是否是同類項,就要掌握兩個條件:
①所含字母相同。
②相同字母的次數也相同。
(2)同類項與系數無關,與字母排列的順序也無關。
(3)所有常數項都是同類項。
初一數學知識點總結 15
一、整式
1、單項式:表示數與字母的積的代數式。另外規定單獨的一個數或字母也是單項式。
單項式中的數字因數叫做單項式的系數。注意系數包括前面的符號,系數是1時通常省略, 是系數, 的系數是
單項式的次數是指所有字母的指數的和。
2、多項式:幾個單項式的和叫做多項式。 (幾次幾項式)
每一個單項式叫做多項式的項,注意項包括前面的符號。
多項式的次數:多項式中次數最高的項的次數。項的次數是幾就叫做幾次項,其中不含字母的項叫做常數項。
3、整式;單項式與多項式統稱為整式。(最明顯的特征:分母中不含字母)
二、整式的加減:①先去括號; (注意括號前有數字因數)
②再合并同類項。 (系數相加,字母與字母指數不變)
三、冪的運算性質
1、同底數冪相乘:底數不變,指數相加。
2、冪的乘方:底數不變,指數相乘。
3、積的乘方:把積中的`每一個因式各自乘方,再把所得的冪相乘。
4、零指數冪:任何一個不等于0的數的0次冪等于1。注意00沒有意義。
5、負整數指數冪: ( 正整數 )
6、同底數冪相除:底數不變,指數相減。
注意:以上公式的正反兩方面的應用。
四、單項式乘以單項式:系數相乘,相同的字母相乘,只在一個因式中出現的字母則連同它的指數作為積的一個因式。
五、單項式乘以多項式:運用乘法的分配率,把這個單項式乘以多項式的每一項。
六、多項式乘以多項式:連同各項的符號把其中一個多項式的各項乘以另一個多項式的每一項。
七、平方差公式
兩數的和乘以這兩數的差,等于這兩數的平方差。
即:一項符號相同,另一項符號相反,等于符號相同的平方減去符號相反的平方。
八、完全平方公式
兩數的和(或差)的平方,等于這兩數的平方和再加上(或減去)兩數積的2倍。
常見錯誤:
九、單項除以單項式:把單項式的系數相除,相同的字母相除,只在被除式中出現的字母則連同它的指數作為商的一個因式。
十、多項式除以單項式:連同各項的符號,把多項式的各項都除以單項式。
【初一數學知識點總結】相關文章:
數學初一知識點總結07-03
初一的數學知識點總結07-05
數學初一知識點總結(精選19篇)10-29
初一數學實數知識點總結12-04
【薦】初一數學知識點總結10-17
初一數學知識點總結【熱】08-28
初一數學知識點總結[薦]06-08
數學初一知識點總結[集合15篇]07-04
初一數學基本知識點總結06-06