rֱ͈AЃɂcQཻ@lֱAĸABcOཻdֱ͈AֻһcQ@lֱAо@">

ДW֪RcY

rg2024-05-13 22:15:10 ־ ֪RcY ҪͶ

˽̰ДW֪RcY

YǰһrεČWrMһȫϵyĿY܉ʹ^XĿ˸_ˣ׌҂һݿY҂ԓôYС˽̰ДW֪RcYϣ

˽̰ДW֪RcY

ДW֪RcY 1

ֱ͈AocQx ABcAOxd>r

ֱ͈AЃɂcQཻ@lֱAĸABcOཻd

ֱ͈AֻһcQУ@lֱAо@ΨһĹccABcOd=r(dAĵֱľx)

ƽȣֱAx+By+C=0cAx^2+y^2+Dx+Ey+F=0λPϵДһ㷽ǣ

1.Ax+By+C=0ɵy=(-C-Ax)/B(B0)x^2+y^2+Dx+Ey+F=0ɞһPxķ

b^2-4ac>0tAcֱ2cAcֱཻ

b^2-4ac=0tAcֱ1cAcֱ

b^2-4ac<0tAcֱ0cAcֱx

2.B=0ֱAx+C=0x=-C/AƽyS(ֱxS)x^2+y^2+Dx+Ey+F=0(x-a)^2+(y-b)^2=r^2y=b˕răɂxֵx1x2Ҏx1

x=-C/Ax2rֱcAx;

ДW֪RcY 2

Tʽı|

^ǺTʽnjn(/2)ǺDǵǺ

õTʽ

ʽһ OK߅ͬĽǵͬһǺֵȣ

sin(2k)=sin kz

cos(2k)=cos kz

tan(2k)=tan kz

cot(2k)=cot kz

ʽ OǣǺֵcǺֵ֮gPϵ

sin()=-sin

cos()=-cos

tan()=tan

cot()=cot

ʽ c -Ǻֵ֮gPϵ

sin(-)=-sin

cos(-)=cos

tan(-)=-tan

cot(-)=-cot

ʽģ ùʽ͹ʽԵõcǺֵ֮gPϵ

sin()=sin

cos()=-cos

tan()=-tan

cot()=-cot

ДW֪RcY 3

PĽǣ

1픽ǣһǵă߅քeһǵă߅ķL@ɂǽ픽

2aǣɂǵĺһƽ@ɂa

3ǣɂǵĺһֱ@ɂǽ

4aǣйcһl߅ɗl߅鷴Lăɂaǡ

ע⣺ࡢaָɂǵĔPϵcɂǵλßoPaDŽtҪɂλPϵ

ǵ|

1픽

2ͬǻȽǵȡ

3ͬǻȽǵa

ДW֪RcY 4

䌍ǵĴСc߅L̛]PϵǵĴСQڽǵăɗl߅_ij̶ȡ

ǵoBx

йcăɗl侀MɵĈDν(angle)@cǵc@ɗl侀ǵăɗl߅

ǵĄӑBx

һl侀@ĶcһλDһλγɵĈDνǡD侀Ķcǵc_ʼλõ侀ǵʼ߅Kֹλõ侀ǵĽK߅

ǵķ̖

ǵķ̖

ǵķN

ڄӑBxȡQDķcǶǿԷ֞Jֱǡgƽܽǡؓǡǡӽ0@10NԶȡ֡λĽǵĶƷQǶơ߀λƵȡ

Jǣ0㣬С90ĽǽJǡ

ֱǣ90Ľǽֱǡ

gǣ90С180Ľǽg

ƽǣ180Ľǽƽǡ

ǣ180С360Ѓ

ӽǣ0С180ӽJǡֱǡgǶӽ

ܽǣ360Ľǽܽ

ؓǣ형rᘷDɵĽǽؓǡ

ǣrDĽǞǡ

0ǣȵĽǡ

Ǻaǣɽ֮͞90tɽǻɽ֮͞180tɽǻaȽǵȽǵaȡ

픽ǣɗlֱཻõֻһc҃ɂǵă߅鷴L@ӵăɂǽ錦픽ɗlֱཻɃɌ픽錦픽ǵăɂ

aǣɂһl߅һl߅鷴L@NPϵăɂa

eǣƽеăɗlֱֱlֱɂǶڃɗlֱ

Ȃȣڵlֱăɂô@ӵһǽe(alternate interior angle )磺1͡62͡5

ͬԃȽǣɂǶڽؾͬһڃɗlؾ֮g@λPϵһǻͬԃȽǡ磺1͡52͡6

ͬλǣɂǶڽؾͬԣַքe̎ڱصăɗlֱͬ,@λPϵһǽͬλ(correspondingangles)1͡82͡7

eǣɗlֱlֱ˰˂ɂǶڃɗlؾȣڽؾăɂô@ӵһǽe磺4c73c8

ͬǣɂǶڽؾͬһڃɗlؾ֮⣬@λPϵһǻͬ磺4͡83͡7

K߅ͬĽǣйͬʼ߅ͽK߅ĽǽнK߅ͬĽcaK߅ͬĽnjڼϣ

A{bb=k_360+a,kZ}ʾǶ;

B{bb=2k+a,kZ}ʾ

ДW֪RcY 5

x

ȣ߅ɱăɂν

ֵcȵĸ

ֵһwĔ磺AB/EF=2

ȲһwĔ磺AB/EF=21ж

CɂΑԓѱʾcĸڌλZԵġABCcDEFơôf@ɂεČcܛ]ЌڌλϣǷ̖ZԵġABCסDEFôf@ɂεČcˌλ

һ(A䶨)

ƽһ߅ֱ߅ڵֱصõcԭơ(@жĶжCĻA@CҪƽоcγɱC)

һεăɂcһεăɂnj,ô@ɂ

ɂεăɽM߅ɱĊA,ô@ɂ

ɂεM߅ɱô@ɂ

(x)

ȣ߅ɱăɂν

ZAͷA

ɂֱУб߅cֱ߅ɱôһƵ

1ɂȫȵ

(ȫƱȞ11)

(ɂΣеһ픽ǻ׽ô@ɂ)

3ɂ߅

(ɂ߅Ƕ60߅߅)

4ֱб߅ĸγɵ(ĸ)

DεČWҪҌ֪RԔ˽͝B͸һ^

ДW֪RcY 6

ڶʽļӜp

21ʽ

1ʽɔֺĸ˷eMɵʽϵʽĴΔʽָǔĸķeĴʽΪһһĸҲdžʽДʽǷdžʽPIҪʽДcĸǷdz˷ePϵĸвĸʽкмp\PϵҲdžʽ

2ʽϵָʽеĔ򔵣

3헔ĴΔָʽĸָĺ͡

4ʽׂʽĺДʽǷǶʽPIҪʽеÿһǷdžʽÿʽQ헣ʽĴΔǶʽдΔĴΔʽĴΔָʽΔ헵ĴΔ@ǴΔΔ6ʽָڶʽÿһʽ؄eעʽ헰ǰ|̖

5ĸʾʽʾPϵעʽͶʽÿһ헶ǰķ̖

6ʽͶʽyQʽ

22ʽļӜp

1ͬ헣ĸͬͬĸָҲͬ헡cĸǰϵ0oP

2ͬ헱ͬrMɂl1ĸͬ2ͬĸĴΔͬȱһɡͬcϵСĸoP

3ϲͬ헣Ѷʽеͬ헺ϲһ헡\ýQYɺͷ

4ϲͬ헷tϲͬ헺헵ϵǺϲǰͬ헵ϵĺĸֲ׃

5ȥ̖tȥ̖̖̖׃̖̖ؓȫ׃̖

6ʽӜpһ㲽E

һȥҡ

1̖ȥ̖tȥ̖2Yͬ3ϲͬ헺Ju

ДW֪RcY 7

1.һԪһηֻ̣һδ֪δ֪ĴΔ1Һδ֪헵ϵʽһԪһη̡

2.һԪһη̵Ę˜ʽax+b=0xδ֪ab֪a0

3.һԪһη̽ⷨһ㲽E̡ȥĸȥ̖헡ϲͬ헡ϵ1 z򞷽̵Ľ⣩

4.һԪһη̽⑪}

1x}ڡֆ}

мx}ҳʾPϵPI磺Сǣɣpס@ЩPIгֵʽғ}Oδ֪}ĿеcPϵʽõ̡

2Dڡг̆}

ÈDηW}ǔνY˼ڔWеwFмx}}⮋PDʹDθ־ضĺxͨ^DPϵǽQ}PIĶȡòз̵c֮gPϵɰδ֪֪PĴʽǫ@÷̵ĻA

11.з̽⑪}ijùʽ

1г̆}x=ٶȡrg

2̆}=Чr

3ʆ}=ȫw

4}ٶ=oˮٶ+ˮٶٶ=oˮٶȡˮٶȣ

5Ʒr}ۃr=rۡ=ۃrɱ

6Lewe}CA=2RSA=R2CL=2a+bSL=abC=4aS=a2Sh=УR2r2VLw=abcVw=a3VA=R2hVAF= R2h

ƒǴWĺģҲд̵ĻASʵĆ}龳ͽQ}Ŀ옷׼WWĘȤҪעW߅Ć}оMЧĔWӺͺ׌WӌW̽W^Ы@֪RwW˼뷽

ДW֪RcY 8

ccD}ҊķNͣ

1еĄc}:cε߅\,}еijc׃֮gPϵ,ДຯD.

2߅еĄc}:c߅ε߅\,}еijc׃֮gPϵ,ДຯD.

3AеĄc}:c؈A\,}еijc׃֮gPϵ,ДຯD.

4ֱpタеĄc}:cֱpタ\,}еijc׃֮gPϵ,ДຯD.

D\cD}ҊNͣ

1c߅ε\ӈDΆ}:һlһ\ӽ^λ߅,}еijc׃֮gPϵ,Mзֶ,ДຯD.

2߅c߅ε\ӈDΆ}:һλ߅һ\ӽ^һ߅,}еijc׃֮gPϵ,Mзֶ,ДຯD.

3߅cA\ӈDΆ}:һAһ\ӽ^һλ߅,һλ߅һ\ӽ^һA,}еijc׃֮gPϵ,Mзֶ,ДຯD.

c}ҊķNͣ

1еĄc}:cε߅\,ͨ^ȫȻ,̽ɵˆDcԭDε߅ǵPϵ.

2߅еĄc}:c߅ε߅\,ͨ^̽ɵˆDcԭDεȫȻ,ó߅ǵPϵ.

3AеĄc}:c؈A\,̽ɵˆDε߅ǵPϵ.

4ֱpタеĄc}:cֱpタ\,̽Ƿڄcɵǵλc֪DƵȆ}.

}ǶκľC}˴ϵκĽʽһκĽʽȫȵж|ֱε|ƽо|νY˼đǽ}PI.

ӑBԆ}ͨnj׺ΈD\^һJRl򡰄ӡcoă“ϵ׃Ҏ׃׃Ķ_}Ŀ.

𺯔ĈD}һѭIJE

1׃ȡֵMзֶ.

2ÿεĽʽ.

3ÿεĽʽ_ÿΈDΠ.

ÈDֶκČH},ҪץסŽc

1׃׃ֵ׃ĈDˮƽαʾ.

2׃׃ֵҲ׃p׃r.

3Dcc.

ДW֪RcY 9

1ؓP

(1)0Ĕ;

ؓ0СĔؓ;

0ȲҲؓ

(2)ؓʾ෴x

2픵ĸ

3PS

(1)SҪأԭcλLSһlֱ

(2)픵ÔSϵcʾSϵcһ픵

(3)S߅Ĕ߅Ĕ;ʾcԭc҂ȣʾؓcԭc

(2)෴̖ͬ^ֵȵăɂ෴

ab෴ta+b=0;

෴DZ0෴ؓؓ෴

(3)^ֵСĔ0;^ֵDZĔǷؓ

4κΔĽ^ֵǷؓ

С1ؓ-1

5ý^ֵ^С

ɂ^^ֵǂ;

ɂؓ^Ľ^ֵ^ֵķС

6픵ӷ

(1)̖ͬăɔӣ͵ķ̖cɂӔķ̖һ͵Ľ^ֵڃɂӔ^ֵ֮.

(2)̖෴ăɔӣɂӔ^ֵȕr͵ķ̖c^ֵ^ļӔķ̖ͬ͵Ľ^ֵڼӔ^Ľ^ֵpȥ^СĽ^ֵ;ɂӔ^ֵȕrɂӔ෴͞.

(3)һͬӣԵ@.

ӷĽQɣa+b=b+a

ӷĽYɣ(a+b)+c=a+(b+c)

7픵p

pȥһڼ@෴

8ڰ픵Ӝp\yһʽؓǰļ̖ʡԲ.

磺14+12+(-25)+(-17)Ԍʡ̖ʽ14+12 -25-17x1412p25p17Ҳx1412ؓ25ؓ17ĺ.

9픵ij˷

ɂٰ̖̖ͬؓѽ^ֵ;κΔc0˶0

һ_eķ̖ ڶ^ֵ

10˷eķ̖Ĵ_

ׂ픵ˣ򔵶 0 reķ̖ؓ򔵵Ă_ؓ攵reؓ;

ؓżreׂ픵,һ򔵞,e͞㡣

11

˷e1ăɂ鵹0]е

ĵؓĵؓ(鵹ăɂ̖һͬ)

DZֻ1-1

ДW֪RcY 10

1.AԈAĞ錦QĵČQD;ͬAȈAİ돽ȡ

2.cľxڶLc܉EԶcAģL돽ĈA

3.ͬAȈAȵĈAĽĻȣȣҵľ

4.AǶcľxڶLcļ

5.AăȲԿLjAĵľxСڰ돽cļ;AⲿԿLjAĵľxڰ돽cļ

6.ͬһֱϵc_һA

7.ֱҵֱƽ@lҲƽăɗl

Փ1

ƽ(ֱ)ֱֱƽăɗl;

ҵĴֱƽ־^Aƽăɗl;

ƽһlֱֱƽƽһl

Փ2AăɗlƽAĻȡ

8.ՓͬAȈAɂAĽɗlɗlһҵľһMôM

9.AăȽ߅εČǻaκһǶăȌ

10.^cҴֱоֱؽ^Aġ

11.ож^돽˲Ҵֱ@l돽ֱLjAо

12.о|Aоֱڽ^cİ돽

13.^AҴֱоֱؽ^c

14.оLĈAһcAăɗlооLȣAĺ@һcBƽփɗlоĊA

15.A߅εăɽM߅ĺǵڃȌǡ

16.ɂAôcһBľ

17.

كɈAxd>R+r

ڃɈAd=R+r

ۃɈAཻd>R-r)

܃ɈAd=R-r(R>r)

݃ɈAȺd=r)

18.шAֳn(n3):

BYcõĶ߅@AăȽn߅

ƽ^cAооĽccĶ߅@An߅

19.κ߅ζһӈAһЈA@ɂAͬĈA

20.LӋ㹫ʽL=nأR/180;eʽS=nأR^2/360=LR/2

21.ȹоL= d-(R-r)⹫оL= d-(R+r)

22.һlĈAܽǵĈAĽǵһ

23.Փ1ͬȻĈAܽ;ͬAȈAȵĈAܽĻҲ

24.Փ2A(ֱ)ĈAֱܽ;90ĈAֱܽ

ДW֪RcY 11

һԪһη̶x

ͨ^ֻһδ֪Һδ֪ߴ헵ĴΔһĵʽһԪһηͨʽax+b=0(ab鳣a0)һԪһη̌ʽ̃߅ʽ

һԪָ̃Hһδ֪һָδ֪ĴΔ1δ֪ϵ0҂ax+b=0(xδ֪ab֪a0)һԪһη̵Ę˜ʽ@aδ֪ϵbdzxĴΔ1

һԪһη̱ͬrM4lǵʽ;Ʒĸвδ֪;δ֪ߴ헞1;Ⱥδ֪헵ϵ0

һԪһη̵傀Ć}

һʲôǵʽ?1+1=1ǵʽ?

ʾPϵʽӽʽʽɷһǺʽ,κSĔֵʽеĸ,ʽă߅,ɔֽMɵĵʽҲǺʽ,2+4=6,a+b=b+aȶǺʽ;ڶǗlʽ,ҲǷ,@ʽֻȡijЩֵʽеĸr,ʽų,x+y=-5,x+4=7ȶǗlʽ;ìܵʽ,ǟoՓκֵʽеĸ,ʽ,x2=-2,|a|+5=0

һʽ,̖һ,Bʽ,BʽԻһMֻһ̖ĵʽ

ʽcʽͬ,ʽке̖,ʽв̖

ʽЃɂҪ|1)ʽă߅ϻpȥͬһͬһʽ,ýYȻһʽ;(2)ʽă߅Իͬһ,ýYȻһʽ

ʲôǷ,ʲôһԪһη?

δ֪ĵʽ,2x-3=8,x+y=7ДһʽǷǷ,ֻ迴c:һDzǵʽ;Ƿδ֪,ȱһɡ

ֻһδ֪,Һδ֪ʽӶʽ,δ֪ĴΔ1,ϵ0ķ̽һԪһη˜ʽax+b=0(a0a,b֪)ֵע1)һʽ̵"Ԫ"""nj@̻ʽж緽2y2+6=3x+2y2,ʽǶԪη,,HһһԪһη̡(2)ʽ̷ĸвδ֪ДǷʽ,DzȌ緽x+1/x=2+1/x,ķĸкδ֪x,,ʽķMл,tx=2,@rȥД,õe`ĽYՓ

ՄΔķ,ָʽ,̵ă߅ʽһԪһηʽԪҴΔ͵ķ̡

ʽʲôţĻ|?

еijЩ헸׃̖,ķ̵һ߅Ƶһ߅׃ν,헵ǵʽĻ|1

헕rһҪѺδ֪Ƶʽ߅ⷽ3x-2=4x-5rͿ԰Ѻδ֪Ƶ߅,ѳƵ߅,@ӕ@úЩ

ȥĸ,δ֪ϵ1,tʽĻ|2Mе

ʽһǷ̆?һǵʽ?

ʽcк֮ܶͬ̎綼õ̖Bӵ,̖҃߅Ǵʽ,߀Ѕ^eġ̃HǺδ֪ĵʽ,ǵʽеf,ʽ;^,̲еĵʽ,13+5=18,18-13=5ڵʽ,Ƿ,ʽһǷ̵fDz

"ⷽ"c"̵Ľ"һƒ?

̵Ľʹ҃߅ȵδ֪ȡֵⷽ󷽳̵ĽД෽̟o^̵ĽǽY,ⷽһ^̵̡Ľе""~,ⷽе""DŽ~,߲ܻ

ДW֪RcY 12

Ǻ͵Ĺʽ

sin(++)=sincos¡cos+cossin¡cos+coscos¡sin-sinsin¡sin

cos(++)=coscos¡cos-cossin¡sin-sincos¡sin-sinsin¡cos

tan(++)=(tan+tan+tan-tantan¡tan)/(1-tantan-tan¡tan-tanátan)

ǹʽ

tan2A = 2tanA/(1-tan2 A)

Sin2A=2SinA?CosA

Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

ǹʽ

sin3A = 3sinA-4(sinA)3;

cos3A = 4(cosA)3 -3cosA

tan3a = tan a ? tan(/3+a)? tan(/3-a)

Ǻֵ

=0 sin=0 cos=1 tn=0 cot sec=1 csc

=15(/12) sin=(6-2)/4 cos=(6+2)/4 tn=2-3 cot=2+3 sec=6-2 csc=6+2

=22.5(/8) sin=(2-2)/2 cos=(2+2)/2 tn=2-1 cot=2+1 sec=(4-22) csc=(4+22)

a=30(/6) sin=1/2 cos=3/2 tn=3/3 cot=3 sec=23/3 csc=2

=45(/4) sin=2/2 cos=2/2 tn=1 cot=1 sec=2 csc=2

=60(/3) sin=3/2 cos=1/2 tn=3 cot=3/3 sec=2 csc=23/3

=67.5(3/8) sin=(2+2)/2 cos=(2-2)/2 tn=2+1 cot=2-1 sec=(4+22) csc=(4-22)

=75(5/12) sin=(6+2)/4 cos=(6-2)/4 tn=2+3 cot=2-3 sec=6+2 csc=6-2

=90(/2) sin=1 cos=0 tn cot=0 sec csc=1

=180() sin=0 cos=-1 tn=0 cot sec=-1 csc

=270(3/2) sin=-1 cos=0 tn cot=0 sec csc=-1

=360(2) sin=0 cos=1 tn=0 cot sec=1 csc

Ǻӛ혿

1ǺӛE

żָǦ/2ıż׃c׃ָǺQ׃׃ָ׃׃(֮Ȼ)̖ޡĺxǣѽǦJ]n(/2)ǵڎ޽Ķõʽ߅̖߀̖ؓ

cos(/2+)=-sinʽ߅cos(/2+)n=1߅̖sinѦJԦ/2<(/2+)<y=cosxڅ^g(/2)С㣬߅̖ؓ߅-sin

2̖ДE

ȫ,S,T,C,@傀ֿE˼fһރκһǵķNǺֵǡ+;ڶރֻǡ+ȫǡ-;ރֻǡ+ȫǡ-;ރֻǡ+ȫǡ-

Ҳ@⣺һָĽȫָnjǺֵQEδἰĶֵؓ

ASTCZ⼴顰all(ȫ)sintancosՌĸZ^팑ռތǺֵ

3Ǻ혿

ǺǺ޷̖עDλAżpF

ͬPϵҪCҪ߅c̎ϵи;

ӛϔһBYcƽPϵnjcһںɸTʽǺؓС׃JǺòCٲһ攵ż׃ҕJǣ̖ԭɽǺ͵ֵνǺֵҷepҷeQ׃αʽͲeͬǶ׃Q

ӋCעYֻ׃y׃

淴ԭtָ罵κͲelʽC˼ָ·

fܹʽһ㣬ʽȡʽú׃\ü;

һңһpңһνǜp罵鷶;

Ǻ|ǶǺֵнȡֵ;

ֱΣֱ^ÓQǵķ⼯

ДW֪RcY 13

ДW֪RcYλ

֪RҪcελƽڃɵҵڃɵ׺͵һ롣

1.λ

(1)λxB΃߅cľνελ

(2)λxBY΃cľνελ

ע⣺

(1)Ҫελcεо^_оBYһc߅cλBY΃߅cľΡ

(2)ελBYcľζBYɵcľΡ

(3)ɂλxg“ϵ԰οϵמrΣ@rελ׃ελ

2.λ

(1)λελƽڵ߅ҵһ.

΃߅cB(λ)ƽڵBC߅ҵڵ߅һ롣

֪RҪIYελɵС(c)eԭeķ֮һ

ДW֪RcYƽֱϵ

njƽֱϵă݌WϣͬWܺõăݡ

ƽֱϵ

ƽֱϵ

ƽȮɗlഹֱԭcغϵĔSMƽֱϵ

ˮƽĔSQxSMSQֱĔSQySvSSĽcƽֱϵԭc

ƽֱϵҪأͬһƽڃɗlSۻഹֱԭcغ

Ҏ

ҎMSȡҞvSȡϞ

چλLȵҎһrMSvSλLͬHЕrҲɲͬͬһSϱͬ

޵ҎϞһϞڶޡžž

挦ƽֱϵ֪RvWͬWѽܺܺõ˰ϣͬWܿԇɹ

ДW֪RcƽֱϵĘ

ƽֱϵĘɃ҂һWŶ

ƽֱϵĘ

ͬһƽϻഹֱйԭcăɗlSƽֱϵQֱϵͨɗlSքeˮƽλcUֱλãȡcϵķքeɗlSˮƽĔSXSMSUֱĔSYSvSXSYSyQSĹԭcOQֱϵԭc

ͨ^挦ƽֱϵĘ֪RvWϣͬWăݶܺܺõͬWJW

ДW֪Rcc˵|

njWc˵|֪RWͬWJ濴Ŷ

c˵|

ƽֱϵϵƽȵκһc҂Դ_^κһ҂ƽȴ_ʾһc

ƽһcC^cCքeSSڣSSϵČcabքecCęMv򌍔abcCˡ

һcڲͬ޻Sϣc˲һӡ

ϣ挦c˵|֪RvWͬWܺܺõգͬWڿԇȡÃɿġ

ДW֪Rcʽֽһ㲽E

PڔWʽֽһ㲽E݌W҂֪Rv

ʽֽһ㲽E

ʽйʽṫʽ]йʽĶʽͿ]\ùʽ헻ϵĶʽͨ÷ֽMֽⷨ\ʮ˷ֽʽԸ飺һᡱסֽMʮ֡

ע⣺ʽֽһҪֽ⵽ÿһʽٷֹֽtDzȫʽֽ}Ŀ]_ָĂʽֽԓָ픵ʽֽ˷ֽʽĽYǎׂʽķeʽ

挦ʽֽһ㲽E֪RăvWͬWѽܺܺõ˰ϣͬWóɿ

ДW֪Rcʽֽ

njWʽֽݵ֪Rv⣬ϣͬWJW

ʽֽ

ʽֽⶨxһʽɎׂʽķeʽ׃νа@ʽʽֽ

ʽֽҪأٽYʽڽYǷeʽ۽Yǵʽ

ʽֽcʽ˷Pϵm(a+b+c)

ʽ

һʽÿ헶еĹʽ@ʽ헵Ĺʽ

ʽ_ϵrȡ󹫼sͬĸȡʹ΃ϵ󹫼scͬĸȡʹ΃ķe@ʽ헵Ĺʽ

ȡʽE

ٴ_ʽڴ_ʽ۹ʽcʽɷeʽ

ֽʽע

ٲʁGĸ

ڲʁGע헔

p̖Ɇ̖

ܽYĸʽʽ

ͬʽɃʽ

̖̖ؓ

̖ͬ헺ϲ

ͨ^挦ʽֽ֪RvWͬWѽܺܺõ˰ϣăݽoͬWČWܺõĎ

ДW֪RcY 14

һc

acʽ

1픵

/0/ؓ

ڷ֔֔/ؓ֔

S

ٮһlˮƽֱֱȡһcʾ0(ԭc)xȡijһLλLҎֱҵķ͵õS

κһ픵ÔSϵһcʾ

ɂֻз̖ͬô҂Qһһ෴ҲQ@ɂ෴ڔSʾ෴ăɂcλԭcăɂcԭcxȡ

ܔSσɂcʾĔ߅Ŀ߅Ĵ0ؓС0ؓ

ڔSһccԭcľxԓĽ^ֵ

Ľ^ֵıؓĽ^ֵ෴0Ľ^ֵ0ɂؓ^С^ֵķС

픵\㣺ӷ

̖ͬӣȡͬķ̖ѽ^ֵӡ

ڮ̖^ֵȕr͞0;^ֵȕrȡ^ֵ^Ĕķ̖^Ľ^ֵpȥ^СĽ^ֵ

һc0Ӳ׃

ppȥһڼ@෴

˷

كɔ̖̖ͬؓ^ֵ

κΔc0˵0

۳˷e1ăɂ픵鵹

ٳһڳһĵ

0

˷nͬaķe\˷˷ĽYЃ磬aеהnдΔ

˷˳Ӝp̖Ҫ̖ġ

2 o픵o޲ѭhСПo픵

ƽ

һxƽaô@xͽagƽ

һxƽaô@xͽaƽ

һ2ƽ/0ƽ0/ؓ]ƽ

һaƽ\_ƽa_

һxaô@xͽa

00ؓؓ

һa\_a_

ٌ픵͟o픵

ڌ෴^ֵx픵ȵ෴^ֵxȫһ

ÿһڔSϵһcʾ

ʽΪһһĸҲǴʽ

ϲͬ헣

ĸͬͬĸָҲͬͬ

ڰͬ헺ϲһ헾ͽϲͬ

ںϲͬ헕r҂ͬ헵ϵĸĸָ׃

4ʽcʽ

ʽ

ٔcĸij˷eĴʽІʽׂʽĺͽжʽʽͶʽyQʽ

һʽУĸָͽ@ʽĴΔ

һʽΔߵ헵ĴΔ@ʽĴΔ

ʽ\㣺Ӝp\r̖ȥ̖ٺϲͬ

\㣺am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn һ

ʽij˷

نʽcʽϵͬĸăքeˣĸBָͬ׃eʽ

چʽcʽˣǸÆʽȥ˶ʽÿһٰõķe

۶ʽcʽһʽÿһ헳һʽÿһٰõķe

ʽɗlƽʽ/ȫƽʽ

ʽij

نʽϵͬהքe̵ʽ;ֻڱʽﺬеĸtBָͬһ̵һʽ

ڶʽԆʽȰ@ʽÿһ헷քeԆʽٰõӡ

ֽʽһʽɎׂʽķeʽ@N׃@ʽֽʽ

ṫʽ\ùʽֽMֽⷨʮ˷

ʽ

ʽaʽbʽbкзĸô@Ƿʽκһʽĸ0

ڷʽķcĸͬԻͬһ0ʽʽֵ׃

ДW֪RcֱλcPϵ

k>0tֱăAбǞJ

k<0tֱăAбǞg

ۈDԽ|k|Խ

b>0ֱcySĽcxSϷ

b<0ֱcySĽcxS·

ДW֪RcY 15

һhnͷʽı

һWĵЧ̌WӰп̌W|

Wď̌WעءĻA֪Rܡ˼ͻӽ򞣩얹̺͡ܡlF}}}Q}܏̌Wyrgص֪̎R얹c֮gPϵ̌WЧڳŒWڵď̌W̎áһA}CϡďʽʹÏ̌WߺĵЧܴߌWlF}}}ͽQ}ͬrڏ̌WϵĽoYݳԇ}ƫyϏ̌WҪƼsпW̌W|ߡ

hnͷʽnČ̌Wĕra

ĿǰAn̸ĸMmȻSϲ׃Sһ̎ڌ`пS[صĽ̌WΣCСMW߳пĽ̌W|SnČWУRشn}Pߌν̌WУ༉ČWM˳LՄLՄӳWWAεĂ}һDzϤпWVĿԇҪͿԇĿ]_ijWķ򣻶ǔWA֪Rղȫ]J֪YДW֪R߉݋PϵǔW}ղДW֪RđðղǔW˼ͻӽǷȱ`\W֪Rͼ

hnͷʽČ`оD׃̎nĽ̌Wmϱ؅^̌WHrijWhn͵ķʽոӿƌWЧďγɃ|ijW̌WYԴ̎ĔWID׃WĔWWʽWnÅc׃ӵĿӵdȤ̽Ķ߳WĽ̌W|

hnͷʽIJԷ

һPI~ĸ綨

1n͡nǸWJ֪cҎɣڌWijһA얹ьW֪RܣM֪RϵyߌW\W֪RQ}Ҫ΄յһNn_չWnĿǜع֪©aȱJ֪YMW}˼뷽γɣlչWW\ÔW֪RQ}

2h@һNmϳW̌WĸЧnģʽ£

Ҫ

1һvwFcٌWǰ12°lďWώr˽WArώVnˣYόWAMж΂n

ڶ˼\ࡱwFcз˼DDIvuиMDDᘌݵyc͌Wec׃ʽDDᘌݵyc͌WecϵyDDӆ

LӜyԇwFڃcٝLӼrDDcycec֪RڷurDDPעͽСMur

2hָWný̌WEչʾ|vӖ_Yur@hhhfMoֻб֏nøЧĿɳmܱп̌W|@PIăcؑձPעһ̎Ҫxn˿VϤопԇ}ľƿWWЧMпָný̌WеİlչurrM׌WW˼w{Ŀ옷

ДW֪RcY 16

һǵĶx

oBйcăɗl侀MɵĈDνǡ

ӑBǿԿһl侀@cһλDһλγɵĈDΡ

һǵă߅һlֱô@ǽƽ;ƽǵһֱ;ֱСƽǵĽǽg;0СֱǵĽǽJ

ǵēQ㣺1ܽ=2ƽ=4ֱ=360;

1ƽ=2ֱ=180;

1ֱ=90;

1=60=3600(1=60=3600);

1=60(1=60).

ǡaǵĸ|

ɂǵĺһƽô@ɂǽa

ɂǵĺһֱô@ɂǽ

faָɂǵĔPϵ]λPϵ

|ͬ(Ƚ);

ͬ(Ƚ)a

ǵı^

ǵĴС^ЃɷN

(1)();

(2)BϷ(ÈAҎֱ)

ƽ־һǵcһl侀@Ƿֳȵăɲ@l侀@ǵƽ־

Ҋ

(1)crPĆ};

(2)ǵӋc

`^

ǵĶλēQ60Mƣ10MQr10MӰ푶e

ДW֪Rc

1.һԪһηֻ̣һδ֪δ֪ĴΔ1Һδ֪헵ϵʽһԪһη

2.һԪһη̵Ę˜ʽax+b=0(xδ֪ab֪a0)

3.һԪһη̽ⷨһ㲽E̡ȥĸȥ̖헡ϲͬ헡ϵ1 (z򞷽̵Ľ)

4.һԪһη̽⑪}

(1)x}ڡֆ}

мx}ҳʾPϵPI֣磺С࣬ɣpס@ЩPIгֵʽғ}Oδ֪}ĿеcPϵʽõ

(2)Dڡг̆}

ÈDηW}ǔνY˼ڔWеwFмx}}⮋PDΣʹDθ־ضĺxͨ^DPϵǽQ}PIĶȡòз̵c֮gPϵ(ɰδ֪֪)PĴʽǫ@÷̵ĻA

11.з̽⑪}ijùʽ

(1)г̆}x=ٶȡrg;

(2)̆}=Чr;

(3)ʆ}=ȫw;

(4)}ٶ=oˮٶ+ˮٶȣٶ=oˮٶȡˮٶ;

(5)Ʒr}ۃr=rۡ=ۃrɱ;

(6)Lewe}CA=2RSA=R2CL=2(a+b)SL=abC=4aS=a2Sh=(R2r2)VLw=abcVw=a3VA=R2hVAF= R2h

ƒǴWĺҲд̵ĻASʵĆ}龳ͽQ}Ŀ옷׼WWĘȤҪעW߅Ć}оMЧĔWӺͺ׌WӌW̽W^Ы@֪RwW˼뷽

ДW֪RcYP£

ДW֪RcY12-12

ДW֪RcY03-11

ДW֪RcY04-08

ДWʽ֪RcY10-21

ДW֪RcY11-03

ДW׺֪RcY03-01

ДWA֪RcY06-07

ДW֪RcY03-07

ДWA֪RcYw{08-26

ДW֪RcY20ƪ07-28

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
自拍偷拍视频一区二区 | 久久精品99久久无色码中文字幕 | 亚洲尤物精品自产拍在线观看 | 日本一区二区人妖 | 日本精品在线不卡中文字幕 | 羞羞视频在线观看网页 |