1.連續的函數不一定可導;
2.可導的函數是連續的函數;
3.越是高階可導函數曲線越是光滑;
4.存在處處連續但處處不可導的函數。">

連續一定可導嗎關系是什么

回答
瑞文問答

2024-08-08

連續與可導的關系
1.連續的函數不一定可導;
2.可導的函數是連續的函數;
3.越是高階可導函數曲線越是光滑;
4.存在處處連續但處處不可導的函數。

擴展資料

  左導數和右導數存在且“相等”,才是函數在該點可導的充要條件,不是左極限=右極限(左右極限都存在)。連續是函數的取值,可導是函數的變化率,當然可導是更高一個層次。

  導數的定義

  導數也叫導函數值。又名微商,是微積分中的重要基礎概念。當函數y=f(x)的自變量x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

  導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變量和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數就是物體的瞬時速度。

  不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。

  對于可導的函數f(x),x?f'(x)也是一個函數,稱作f(x)的導函數(簡稱導數)。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運算法則也來源于極限的四則運算法則。反之,已知導函數也可以倒過來求原來的函數,即不定積分。微積分基本定理說明了求原函數與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
亚洲欧美激情综合在线观看 | 亚洲国产人成视频在线观看 | 永久中在线文字幕 | 亚洲综合日韩精品国产A∨ 嫩草研究所久久久精品 | 欧美精品中文字幕第九在线 | 亚洲喷奶水中文字幕电影 |